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Abstract— Social navigation for bipedal robots remains rela-
tively unexplored due to the highly complex, nonlinear dynam-
ics of bipedal locomotion. This study presents a preliminary
exploration of social navigation for bipedal robots in a human
crowded environment. We propose a social path planner that
ensures the locomotion safety of the bipedal robot while
navigating under a social norm. The proposed planner leverages
a conditional variational autoencoder architecture and learns
from human crowd datasets to produce a socially acceptable
path plan. Robot-specific locomotion safety is formally enforced
by incorporating signal temporal logic specifications during the
learning process. We demonstrate the integration of the social
path planner with a model predictive controller and a low-
level passivity controller to enable comprehensive full-body joint
control of Digit in a dynamic simulation.

I. INTRODUCTION

Bipedal navigation in complex environments has garnered
substantial attention within the robotics community [1]–[7].
Very recently, there has been an increasing focus on social
navigation for mobile robots in human-life environments [8]–
[13]. Nonetheless, the exploration of social navigation in the
context of bipedal robots remains largely underexplored. This
can be significantly attributed to the nonlinear dynamics chal-
lenge associated with bipedal locomotion. In this preliminary
study, our objective is to develop a social planner capable of
generating robot paths that ensure the safety of the bipedal
system Digit [14] by integrating locomotion safety into the
social planner.

To construct a social path planner, we seek inspiration
from the human trajectory prediction community [15]–[19].
The work in [20] proposes an obstacle avoidance learn-
ing method that uses Conditional Variational Autoencoder
(CVAE) framework to learn a temporary target distribution
to avoid pedestrians actively. However, during the learning
phase, the temporary targets are selected heuristically. In
contrast, we aim to learn such temporary waypoints from
human crowd datasets. In [16], the authors introduce both
VAE and CVAE architectures to produce accurate pedestrian
trajectory prediction, where their learned model is not only
conditioned on the past trajectory of the pedestrian but also
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Fig. 1: Block diagram of the proposed framework for socially acceptable
navigation for the bipedal robot Digit. The social path planner takes the
surrounding pedestrians’ positions and goal location as input from the
environment and then generates a path that gets sent to the Model Predictive
Controller (MPC). The MPC solves for desired velocity and heading change
commands to the Angular-momentum-based Linear Inverted Pendulum
(ALIP) controller to generate foot placements for Digit.

the intermediate endpoint of the trajectory, representing the
pedestrians’ intent.

In contrast to existing pedestrian trajectory prediction
models [15]–[17] that focus on predicting trajectories of
human crowds, our objective is to develop a high-level
social path planner specifically designed for bipedal robots.
Our learning algorithm is centered around leveraging the
robot’s sensory data points and locomotion capabilities to
enhance its path-planning capabilities. Drawing inspiration
from PECNet [16], our devised framework adopts a similar
CVAE structure but is distinct by taking into account robot-
specific locomotion safety and incorporating the ego-agent
final destination as the input. As a result, our planner will
generate path plans not only imitating how a human would
react in a social setting but also providing safety guarantees
designed for robotic systems.

The main contributions of this study are as follows:

• High-level social navigation planner for socially accept-
able path design utilizing a CVAE architecture.

• Formally encoding locomotion safety into the high-level
learning module.

• Showcasing the viability of hierarchically integrating



Fig. 2: Social path planning module architecture for learning ego agent’s
trajectory generation conditioned on the relative position of neighboring
pedestrians and goal position. Dashed connections are utilized only during
training.

the social path planner with a discrete Model Predictive
Controller (MPC) and a low-level passivity controller
for full-body joint control of Digit.

II. HIGH-LEVEL SOCIAL PATH PLANNER

A. Preliminaries
In this work, we hypothesize that in a social setting, the

information accessible by the ego-agent that forms its own
future path (xego

[t,tf ]
, yego[t,tf ]

) = T ego
[t,tf ]

are three folds, first its
final destination (xdest, ydest) = G (intent), the surrounding
pedestrians’ past trajectory (xpk

[tp,t]
, ypk

[tp,t]
) = T pk

[tp,t]
for the

kth pedestrian, and the ego-agent’s social experience, i.e.,
its own assumptions on how to navigate the environment in
a socially-acceptable manner. We treat the social experience
as latent information that is not readily available in human
crowd datasets. Therefore we make the following assump-
tion.

Assumption II.1. Learning the future trajectory of an ego-
agent T ego

[t,tf ]
based on its final goal G and surrounding pedes-

trians’ past trajectories T pk

[tp,t]
, will learn the ego-agent’s

social experience that encompasses implicitly the ego-agent’s
own prediction of other pedestrians’ future trajectories.

With the intention of implementing the social path planner
on our bipedal walking robot Digit [14], T ego

[t,tf ]
, T pk

[tp,t]
and

G are all expressed relative to Digit’s current position T ego
t .

Given Digit’s limited sensing capability of the surrounding
environment, we only consider the pedestrians that are within
a radius r at a specific time t and assume that their past
trajectories were observable over a specified time interval
from tp to t.

B. Learning Architecture
Similar to PECNet [16], we set up a CVAE architecture

to learn the ego-agent’s future trajectory conditioned on
the final destination goal1 and surrounding pedestrians. The

1unlike PECNet, we are not seeking to learn the endpoint, as the final
destination goal for the robot is known in the navigation task.

Fig. 3: Loss function setup for the neural network with added STL loss

proposed architecture incorporates Multi-Layer Perceptrons
(MLP) with ReLU non-linearity for all the sub-networks.

The learning phase pipeline is shown Fig. 2 and elaborated
as follows. The surrounding pedestrians’ past trajectories
T pk

[tp,t]
are encoded in Eped individually and the latent fea-

tures Eped(T pk

[tp,t]
) are then aggregated through summation

to take into account the collective effect of the surrounding
pedestrian while keeping a fixed architecture2 [17], [21], [22]
as seen by the green arrows in Fig. 2. The goal location for
the ego-agent is encoded in Egoal as seen by the orange arrow
in Fig. 2. The resultant latent features

∑n
k=1 Eped(T pk

[tp,t]
)

and Egoal(G) are then concatenated as environment features
Fenv. The ground truth of the ego-agent future trajectory
T ego
[t,tf ]

is encoded in Etraj as shown by the red arrows
in Fig. 2. The resultant latent features Etraj(T ego

[t,tf ]
) are

then concatenated with Fenv as global features Fglobal and
encoded in the latent encoder Elatent.

We sample potential future trajectories from the latent
distribution N (µ, σ) generated by the Elatent module, and
concatenate them with Fenv. This concatenated information
is then passed into the latent decoder Dlatent, resulting in
our prediction of the ego-agent’s future trajectory T̂ ego

[t,tf ]

C. Formally Incorporating Robot Safety Specifications

To deploy the learning-based social path planner on
the Digit robot, it is essential to integrate certain desired
behaviors. These behaviors are crucial for ensuring robot
locomotion safety, but they are not explicitly present in
human crowd datasets.

Signal Temporal Logic (STL) is a well-established tem-
poral logic language to formally encode natural language
into mathematical representation for control synthesis [23].
More importantly, the quantitative semantics of STL offer a
measure of the robustness of an STL specification ρ(st, ϕ),
i.e., quantify the satisfaction or violation of the specification
ϕ given a specific signal st. Positive robustness values in-
dicate satisfaction, while negative robustness values indicate
a violation. The authors in [24] present STLCG, a tool that
transforms STL formulas into computational graphs to be
used in gradient-based problems such as neural network
learning. To this end, we utilize STLCG to formally incor-
porate desired safety behaviors into our learning framework

2Other human trajectory learning modules include a social module to
take into account the surrounding pedestrians effect such as social non-local
pooling mask [16], max-pooling [18], and sorting [19].



by encoding STL specifications as additional loss functions
that penalize STL formula violation [24], [25].

The locomotion safety specifications are derived based
on our previously introduced Reduced-Order Model (ROM)
safety theorems [26] and our empirical knowledge about the
locomotion safety of Digit [14] during our experiments. In
these specifications, we regulate T̂ ego

[t,tf ]
to limit the sagittal

and lateral Center of mass (CoM) velocities as well as the
heading change between consecutive walking steps.

1) Locomotion velocity specification ϕvel: Let s
vsag
[t+1,tf ]

and svlat[t+1,tf ]
be a signal equal to the velocity of T̂ ego

[t,t+f ] in the
sagittal and lateral directions, respectively. The locomotion
velocity specification has:

ϕsag = □[t+1,tf ](s
vsag
[t+1,tf ]

≤ vmax ∧ s
vsag
[t+1,tf ]

≥ vmin)

ϕlat = □[t+1,tf ](s
vlat
[t+1,tf ]

≤ vlat ∧ svlat[t+1,tf ]
≥ −vlat)

ϕvel = ϕsag ∧ ϕlat

Accordingly, the loss of the locomotion velocity specifi-
cation is defined as:

Lϕvel
= ReLU(−ρ((svsag , svlat), ϕvel))︸ ︷︷ ︸

velocity violation

(1)

2) Heading change specification ϕ∆θ: Let s∆θ
[t+1] be a

signal equal to the heading change between T̂ ego
t and T̂ ego

t+1 ,
heading change specification is:

ϕ∆θ = □[t+1,tf ](s
∆θ
[t+1,tf ]

< ∆θmax ∧ s∆θ
[t+1,tf ]

> −∆θmax)

Therefore, the loss of the heading change specification is:

Lϕ∆θ
= ReLU(−ρ(s∆θ, ϕ∆θ))︸ ︷︷ ︸

heading change violation

(2)

D. Training
The network is trained end to end using the following

loss function: L = L0 + LSTL, where L0 includes a KL
divergence term, endpoint loss, and average trajectory loss,
akin to the loss function utilized in [16]. LSTL is the sum of
STL specification losses LSTL = α1Lϕ∆θ

+ α2Lϕvel
, where

α1 and α2 are constant weights.

III. BIPEDAL MOTION PLANNING

A. Reduced-order MPC
At the middle level of our navigation framework in Fig. 1,

we employ a ROM-based MPC as a step planner for the
bipedal system [3]. The objective of this layer is to design a
ROM motion plan that tracks the desired trajectory produced
by the social path planner. The ROM utilized to design the
motion of Digit is the Linear Inverted Pendulum (LIP) model.

1) Model Dynamics: For the LIP model we assume that
each step has a fixed duration T 3, the discrete sagittal
dynamics4 of the qth walking step of the LIP model are:

xq+1 =

[
xq+1

ẋq+1

]
=

[
sinh(ωT )/ω
cosh(ωT )

]
ẋq +

[
1− cosh(ωT )
−ω sinh(ωT )

]
uf
q

(3)
3set to be equal to the timestep between frames in the dataset (0.4 s)
4the lateral dynamics are only considered at the low level since it is

periodic with a constant desired foot placement.

where uf
q is the sagittal foot position relative to the CoM,

xq+1 is incremental change in CoM between walking steps
(see the ALIP model in Figure. 1), and ω =

√
g/H , where

g is the gravitational constant and H is the CoM height. To
plan motions for the LIP model in a global coordinate, we
set the heading change to be θq+1 = θq+u∆θ

q and the global
CoM positions to be:

xg
q+1 =

[
xg
q+1

ygq+1

]
=

[
xg
q

ygq

]
+

[
cos θq
sin θq

]
xq+1 (4)

2) Constraints: To prevent the LIP dynamics from taking
a step that is infeasible by the Digit robot the following
constraint is implemented

XUq = {(xq,uq) | xlb ≤ xq ≤ xub and ulb ≤ uq ≤ uub}
(5)

where uq = [uf
q u∆θ

q ], xlb and xub are the lower and upper
bound of xq respectively, and ulb and uub are the bounds
for uq .

To enforce navigational safety at the middle level, a control
barrier function constraint [3], [27] is implemented to avoid
the collision with the closest pedestrian (xpc , ypc) as such:

h(xg) =

((
xg − xpc

0.2

)2

+

(
yg − ypc

0.2

)2
) 1

2

− 1

where h(xg
0) ≥ 0.

3) Cost: Let Sxq = [xg
q ygq θq ẋq], the running cost

is defined as:

Jq(Sxq) = ∥Sxq − xT̂ ego
q

∥2W1
(6)

where xT̂ ego
q

= [T̂ ego
q s∆θ

q s
vsag
q ] and W1 is diagonal

weighting matrix. The terminal cost of the MPC is defined
as:

JN (SxN ) = ∥SxN − xG∥2W2
(7)

where N is the number of walking steps within the MPC
horizon, xG = [G θterminal ẋterminal], and W2 is diagonal
weighting matrix.

Let Sxq+1 = Φ(Sxq,uq) be the dynamics describing the
evolution of Sx. Similar to [3], the step planner can be solved
by:

min
X

N−1∑
q=0

Jq(Sxq) + JN (SxN )

s.t. Sxq+1 = Φ(Sxq,uq)

(xq,uq) ∈ XUq

h(Sxq+1) ≥ (1− γ)h(Sxq)

(8)

B. Low-level Full-Body Control

At the low level we utilize the Angular momentum LIP
planner introduced in [28], and Digit’s passivity controller
with ankle actuation introduced in our previous work [26].
Here we set the walking step time and lateral step width to
be fixed at 0.4 s and 0.4 m, respectively.



Fig. 4: Results of testing two neural networks with and without STL locomotion losses are shown in green and red, respectively. (a) shows violin plots of
ADE, FDE, heading change violation, and velocity violation for two different sets of data UNIV and ZARA1. (b) shows the LIP CoM trajectory along
with the ground truth trajectory from the crowd dataset. (c) Shows Digit’s CoM trajectory, and (d) shows commanded CoM velocity and heading change.

IV. RESULTS AND IMPLEMENTATION

A. Implementation

The social path planner module introduced in Sec. II was
trained on the UCY [29] and ETH [30] crowd datasets
with the common leave-one-out approach, reminiscent of
prior studies [16]–[18], [31]. To evaluate the performance
of adding robot locomotion specifications into the training,
we trained two neural network models with and without the
added robot-specific losses introduced in Sec. II-C. These
models were trained on two distinct sets of datasets, with
one set excluding UNIV from the training examples, and
the other set excluding ZARA1. We employ a historical
trajectory observation T pk

[tp,t]
and a prediction horizon T̂ ego

[t,tf ]
,

each spanning a duration of 8 timesteps (3.2 s) and only
consider neighboring pedestrians that are within a radius of
4 m.

B. Evaluating Social Prediction Accuracy with Bipedal Lo-
comotion Safety Specifications

In Figure. 4, We show that the standard prediction ac-
curacy metrics (ADE and FDE) are minimally affected by
the addition of the locomotion-specific losses5 as seen in
Figure. 4(a), while the heading change violation and velocity
violation are significantly reduced in the social planner model
that includes the locomotion safety specification losses.

As our objective is to employ the prediction module as
a robot path planner, the focus remains on consistently
identifying viable walking paths. Our intention does not
encompass predicting the ego-agent’s trajectory during sta-
tionary periods or when the ground truth trajectory deviates
towards an interim route apart from the ultimate destination
G. In such scenarios, elevated ADE and FDE values emerge.

5Anticipated accuracy deviations may arise from variances in human
locomotion, including abrupt halts, turns, and differing walking speeds that
may not align with Digit’s safe operational parameters.

C. Digit Social Navigation Task

First, we evaluate our framework by substituting one
pedestrian with the LIP model and generating motion plans at
the middle level. Figure. 4(b) shows the LIP CoM trajectory
(orange) compared to the substituted pedestrian ground truth
trajectory (magenta).

Second, we evaluate the locomotion safety by employing
identical parameters and initial conditions for both the MPC
and the low-level controller, we empirically demonstrate that
Digit consistently falls when using the social path planner
without the STL-based locomotion safety losses as seen
in Figure. 4(c). Figure. 4(d) shows the CoM velocity and
the heading change produced by the social path planner
corresponding to the trajectories illustrated in Figure. 4(c).
The CoM velocity and the heightened rate of heading change
produced by the social path planner without the STL-based
locomotion safety losses result in failure.

Remark 1. Certainly, while using overly conservative con-
straints in MPC (Eq.(5)) can ensure safe locomotion, employ-
ing the social path planner with STL-based safety permits
less conservative constraints without compromising safety.

V. CONCLUSION

We presented a hierarchical planning framework designed
for socially acceptable navigation of bipedal robots. Our
framework generates a socially acceptable path while main-
taining the locomotion safety of the bipedal system. Future
work will include; (i) enhancing STL specification design
to encompass a wide range of safety parameters in robot
navigation; (ii) a middle-level locomotion planner that factors
in the anticipated trajectories of surrounding pedestrians;
(iii) in-depth comparisons with other human trajectory pre-
diction modules; and (iv) comparing the success rates of
the proposed framework with and without the incorporated
locomotion safety losses.
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